Bound-Constrained Polynomial Optimization Using Only Elementary Calculations

نویسندگان

  • Etienne de Klerk
  • Jean B. Lasserre
  • Monique Laurent
  • Zhao Sun
چکیده

We provide a monotone non increasing sequence of upper bounds f k (k ≥ 1) converging to the global minimum of a polynomial f on simple sets like the unit hypercube. The novelty with respect to the converging sequence of upper bounds in [J.B. Lasserre, A new look at nonnegativity on closed sets and polynomial optimization, SIAM J. Optim. 21, pp. 864–885, 2010] is that only elementary computations are required. For optimization over the hypercube, we show that the new bounds f k have a rate of convergence in O(1/ √ k). Moreover we show a stronger convergence rate in O(1/k) for quadratic polynomials and more generally for polynomials having a rational minimizer in the hypercube. In comparison, evaluation of all rational grid points with denominator k produces bounds with a rate of convergence in O(1/k2), but at the cost of O(k) function evaluations, while the new bound f k needs only O(n) elementary calculations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Discrete Optimization via Dual Space Search

This paper proposes a novel algorithm for solving NP-hard constrained discrete minimization problems whose unconstrained versions are solvable in polynomial time such as constrained submodular function minimization. Applications of our algorithm include constrained MAP inference in Markov Random Fields, and energy minimization in various computer vision problems. Our algorithm assumes the exist...

متن کامل

Monomial-wise optimal separable underestimators for mixed-integer polynomial optimization

In this paper we introduce a new method for solving box-constrained mixed-integer polynomial problems to global optimality. The approach, a specialized branch-and-bound algorithm, is based on the computation of lower bounds provided by the minimization of separable underestimators of the polynomial objective function. The underestimators are the novelty of the approach because the standard appr...

متن کامل

Global Optimization of Polynomial Functions and Applications

Global Optimization of Polynomial Functions and Applications by Jiawang Nie Doctor of Philosophy in Applied Mathematics University of California, Berkeley Professor James Demmel, Co-Chair Professor Bernd Sturmfels, Co-Chair This thesis discusses the global optimization problem whose objective function and constraints are all described by (multivariate) polynomials. The motivation is to find the...

متن کامل

Global Optimization of Rational Multivariate Functions

The paper deals with unconstrained global minimization of rational functions. A necessary condition is given for the function to have a nite innmum. In case the condition is satissed, the problem is shown to be equivalent to a speciic constrained polynomial optimization problem. In this paper, we solve a relaxation of the latter formulation using semi-deenite programming. In general, the relaxa...

متن کامل

An Exact Algorithm for the Mode Identity Project Scheduling Problem

In this paper we consider the non-preemptive variant of a multi-mode resource constrained project scheduling problem (MRCPSP) with mode identity, in which a set of project activities is partitioned into disjoint subsets while all activities forming one subset have to be processed in the same mode. We present a depth-first branch and bound algorithm for the resource constrained project schedulin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2017